-continued

Ser	Cys	Ala 35	Ala	Val	Pro	Ala	Glu 40	Val	Ala	Arg	His	His 45	Glu	His	Ala
Ala	Arg 50	Ala	Gly	Gln	CAa	Сув 55	Ser	Ala	Val	Val	Gln 60	Ala	Ile	Ala	Ala
Pro 65	Val	Gly	Ala	Val	Trp 70	Ser	Val	Val	Arg	Arg 75	Phe	Asp	Arg	Pro	Gln 80
Ala	Tyr	Lys	His	Phe 85	Ile	Arg	Ser	CAa	Arg 90	Leu	Val	Asp	Asp	Gly 95	Gly
Gly	Gly	Ala	Gly 100	Ala	Gly	Ala	Gly	Ala 105	Thr	Val	Ala	Val	Gly 110	Ser	Val
Arg	Glu	Val 115	Arg	Val	Val	Ser	Gly 120	Leu	Pro	Ala	Thr	Ser 125	Ser	Arg	Glu
Arg	Leu 130	Glu	Ile	Leu	Asp	Asp 135	Glu	Arg	Arg	Val	Leu 140	Ser	Phe	Arg	Val
Val 145	Gly	Gly	Glu	His	Arg 150	Leu	Ala	Asn	Tyr	Arg 155	Ser	Val	Thr	Thr	Val 160
His	Glu	Ala	Glu	Ala 165	Gly	Ala	Gly	Gly	Thr 170	Val	Val	Val	Glu	Ser 175	Tyr
Val	Val	Asp	Val 180	Pro	Pro	Gly	Asn	Thr 185	Ala	Asp	Glu	Thr	Arg 190	Val	Phe
Val	Asp	Thr 195	Ile	Val	Arg	CAa	Asn 200	Leu	Gln	Ser	Leu	Ala 205	Arg	Thr	Ala
Glu	Arg 210	Leu	Ala	Leu	Ala	Leu 215	Ala								

What is claimed is:

1. A method of increasing stress tolerance in a plant, the method comprising contacting the plant with a sufficient amount of a compound to increase stress tolerance in the plant compared to not contacting the plant with the compound;

wherein the compound is selected from the group consisting of:

and salts thereof, and

wherein

R¹ is an heterocycyl, aryl, or heteroaryl group, optionally substituted with from 1 to 4 R⁹ groups;

L is selected from the group consisting of a single bond, -O-, $-(O)_m-CH_2-$, and $-(O)_m-CH(R^{10})-$;

m is an integer selected from the group consisting of 0 and 1; wherein if R¹ is 2,5-dichlorophenyl and R² is —(O)

 $_{m}$ —CH₂—, m is 0; Y is —C(=O)— or —S(=O)₂—; R^{2a} and R^{2b} are selected from the group consisting of hydrogen and R^{10} , wherein at most one of R^{2a} or R^{2b} is hydrogen; or, alternatively, R^{2a} and R^{2b} join to form a four- to seven-membered carbocyclic or heterocyclic ring, optionally substituted with from 1 to 4 R⁹ groups;

R³ is selected from the group consisting of hydrogen, R¹⁰, and C_{7-11} arylalkyl, optionally substituted with from 1 to 4 R⁹ groups; R^{4a} and R^{4b} join to form a heteroaryl group, wherein the

heteroaryl group is part of a polycyclic group with one or two additional fused carbocyclic, heterocyclic, aryl, or heteroaryl rings; and wherein the polycyclic group is optionally substituted with from 1 to 4 R⁹ groups;

R⁵ and R⁶ are each an aryl or heteroaryl group, optionally substituted with from 1 to 4 R⁹ groups;

R⁷ is selected from the group consisting of —NH(R¹¹), —NH(CO)(R^{11}), and R^{11} ; or, alternatively, R^7 and R^8 join to form a 1,2,3,4-tetrahydroquinoline or 3,4-dihydroquinolin-2(1H)-one ring, wherein said ring is optionally substituted with from 1 to 4 R9 groups;

R⁸ is selected from the group consisting of hydrogen and R^1 , wherein R^8 is hydrogen only if R^7 is —NH(R^{11}); or, alternatively, R⁷ and R⁸ join to form a 1,2,3,4-tetrahy-droquinoline or 3,4-dihydroquinolin-2(1H)-one ring, wherein said ring is optionally substituted with from 1 to 4 R⁹ groups;

each R⁹ is independently selected from the group consisting of C₁₋₆ alkyl, C₃₋₆ cycloalkyl, C₁₋₆ haloalkyl, C₁₋₆